Point-Region
Quadtree

CS 251 - Data Structures
and Algorithms




| Note:
Slides complement the
discussion in class

O

@) O



Point-Region Quadtree Table of Contents
@ Working with uniform planar

subdivisions




Data is Multidimensional

More Keys to Search

Every dimensionin a
data point can be a key.

{1 T I I T Y B |

Geometric Data

Metric between data
points is relevant.

Data Topology

Incidency between data
points is relevant.




A Data Structure to Support This?



https://ec.nintendo.com/NZ/en/titles/70010000002861

01

Point- Reglon Quadtree

rrrrrrrrrrrrrrrrrrrrrrr
subdivisions




Finkel, R. A., and J. L. Bentley. "Quad
Trees: A Data Structure for Retrieval
on Composite Keys." Acta Informatica
4, no. 1 (March 1974): 1-9.

https://doi.org/10.1007/BF002889333

Acta Informatica 4, 1—9 (1974)
© by Springer-Verlag 1974

Quad Trees
A Data Structure for Retrieval on Composite Keys
R. A, Finkel and J. L. Bentley
Received April 8, 1974

Summary. The quad tree is a data structure appropriate for storing information
o be retrieved on composite keys. W discuss the spesific case of two-dimensional
retrieval, although the
are given both for staightforward insertion and]w a ty-pea! bnhn:zdm.smmn lnto
quad treés, Empirical analyses show that the average time for insertion is
with the tree size. An algorithm for retrieval within reglol:u is presented along with’
data from empirical studies which imply that searchmg is roasonably efﬂdent We
define an optimized tree and present an algori P P inm
log » time. hing is to be fast in optimized trees. R H
include those of deletion from quad trees and merging of quad trees, w]m:h seem to
be inherently difficult operations.

Introduction

One way to attack the problem of retrieval on composite keys is to consider
records arranged in a several-dimensional space, with one dimension for every
attribute. Then a query ggncerning the presence or absence of records satisfying
given criteria becomes a specification of some (possibly disconnected) subset of
that space. All records which lie in that subset are to be returned as the response
to the query.

The retrieval of information on only one key has been well studied. Experience
has shown binary trees serve as a good data structure for representing linearly
ordered data, and that balanced binary trees provide a gnaranteed fast structare
(Knuth, 6.2.3).

This paper will discuss a generalization of the binary tree for the treatment of
data with inherently two-dimensional structure. One clear example of such
records is that of cities on a map. A sample query might be: ““Find all the cities
which are within 300 miles of Chicago or north of Seattle.” The data structure
we propose to handle such queries is called a quad tree. It will be obvious that
the basic concepts involved are easily generalized to records of any dimensionality,

Definitions and Notation

The location of recoids with two-dimensional keys will be stored in a tree
with out-degree four at each node. Each node will store one record and will have
up to four sons, each a node. The root of the tree divides the universe into four
quadrants, namely NE, NW, SW, and SE (using the map analogy). Let us call
these quadrants one, two, three and four, respectively. Fig. 1 shows the cor-
respondence between a simple tree and the records it represents.

The convention we use for points which lie directly on one of the quadrant
lines emanating from a node is as follows: Quadrants one and three are closed,

1 Acta Informatica, Vol 4



https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/BF00288933

Quadtrees

By Lkjhsdfljsd - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47469171

Quadtrees are tree data structures where
each node has exactly four children.

Useful to partition a two-dimensional
space by recursive subdivisions into four
quadrants.

Each leaf represents a “unit of interesting
spatial information”.



https://commons.wikimedia.org/w/index.php?curid=47469171

Point-Region
Quadtree

15.3. The PR Quadtree — CS3 Data Structures & Algorithms (vt.edu)

Each node either has exactly four
children (NW, NE, SW, SE)oris a
leaf (stores at most one data point).

Full four-way branching (4-ary) tree
in shape.

Uniform subdivision of each
(sub)quadrant continues until no
leaf contains more than a single
point.

Useful to search individual points
or regions in the plane.


https://opendsa-server.cs.vt.edu/OpenDSA/Books/CS3/html/PRquadtree.html

Point-Region Quadtree Example

E F

0 127
O [ J
C
A A
¢ . (40,45)
D
. C D
B I (70, 10) (69,50)
E [ ]
127

15.3. The PR Quadtree — CS3 Data Structures & Algorithms (vt.edu)

(55,80)(80, 90)

10


https://opendsa-server.cs.vt.edu/OpenDSA/Books/CS3/html/PRquadtree.html

Each node stores:

e Therectangular region it represents.
e AZ2D point, or

e (uadrants.

Let n be a Point-Region Quadtree node,

[ ] [ ]
Point-Region -
e n.region refers to the tuple storing the

minimum and maximum coordinates of

Quadtree Node . m...coommoons

stores.

e n.children refers to the container with
the memory references to four Point-
Region Quadtree nodes: NW, NE, SW,
and SE.

Note: This description supports at most one 2D point per leaf. Yet, more than one point can be store, provided we control the maximum capacity. Once the points overflow, the node must be splitinto quadrants.

ll



In Boundary
and Subdivide

algorithm inboundary(B:region, P:point) - bool
return B.xmin < P.x < B.xmax and
B.ymin < P.y < B.ymax
end algorithm

algorithm subdivide(root:node)

xmin, ymin, xmax, ymax < root.region
xmid < (xmin + xmax)
ymid « (ymin + ymax)
root.children « [

if

Node (Region(xmin,
Node (Region(xmid,
Node (Region(xmin,
Node (Region(xmid,
root.point is not
P <« root.point

root.point « Null
for each quadrant

return
end if
end for

end if
end algorithm

/ 2
/ 2

ymid,
ymid,
ymin,
ymin,

xmid, ymax)), //NW
xmax, ymax)), //NE
xmid, ymid)), //SW
xmax, ymid))] //SE

Null then

in root.children do
if insert(P, quadrant) then

12



Insert

algorithm insert(P:point, root:node) - bool
if not inboundary(root.region, P) then
return false
end if
if root.point is Null and |root.children| = @ then
root.point « P
return true
end if
if |root.children| = @ then
subdivide(root)
end if
for each quadrant in root.children do
if insert(P, quadrant) then
return true
end if
end for
end algorithm

13



Search In Point-Region
Quadtrees

Single point search: Let P be a point in a Point-Region Quadtree.
If the root is a leaf, check if the root’s data matches with P.
Otherwise, continue the search recursively to the quadrant that contains P.

Region search: To locate all points within radius r of query point P:
Begin at the root. If the root is an empty leaf node, then no data points are
found.
If the root is a leaf containing a data record, then the location of the data point
is examined to determine if it falls within the circle.
If the root is an internal node, then the process is performed recursively, but
only on those subtrees containing some part of the search circle.

14



Range Query

algorithm overlaps(R1l:region, R2:region) - bool
xminl, yminl, xmaxl, ymaxl « R1
xmin2, ymin2, xmax2, ymax2 « R2
return not (xmaxl < xmin2 or xminl

< xmax2 or
ymaxl £ ymin2 or yminl

ymax2)

v Iv

end algorithm

algorithm rangequery(range:region, root:node)
let results be an empty container
if not overlaps(range, root.region) then
return results
end if
if root.point is not Null and inboundary(range, root.point) then
results.append(root.point)
end if
if |root.children| = @ then
return results
end if
for each quadrant in root.children do
result < rangequery(range, quadrant)
if |result| > @ then
results.join(result)
end if
end for
return results
end algorithm

15



Search In Point-Region
Quadtrees (cont.)

Search complexity?
- Balanced? O(log,(n))
- Not balanced? O(n)

Balancing challenges:
Uniform subdivisions? Most likely not balanced.
Requires adjustable subdivisions.
Dense regions require more subdivisions.

16



Recursive Binary Space Partitioning QW

17



https://commons.wikimedia.org/w/index.php?curid=148984172

Octree (For 3D Points

e

By WhiteTimberwolf, PNG version: Ni - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9851485

18


https://commons.wikimedia.org/w/index.php?curid=9851485

Done!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by
Stories

19


https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Point-Region Quadtree
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Data is Multidimensional
	Slide 5: A Data Structure to Support This?
	Slide 6: Point-Region Quadtree
	Slide 7: Finkel, R. A., and J. L. Bentley. "Quad Trees: A Data Structure for Retrieval on Composite Keys." Acta Informatica 4, no. 1 (March 1974): 1-9.
	Slide 8: Quadtrees
	Slide 9: Point-Region Quadtree
	Slide 10: Point-Region Quadtree Example
	Slide 11: Point-Region Quadtree Node
	Slide 12: In Boundary and Subdivide
	Slide 13: Insert
	Slide 14: Search In Point-Region Quadtrees
	Slide 15: Range Query
	Slide 16: Search In Point-Region Quadtrees (cont.)
	Slide 17: Recursive Binary Space Partitioning QT
	Slide 18: Octree (For 3D Points)
	Slide 19: Done!

